天津汽车网

当前的位置是:主页 >> 节能

木纹智慧型计算在大数据分析之应用

时间:2020-09-17 来源网站:天津汽车网

智慧型计算在大数据分析之应用

在数据爆炸量、多样化以及数据更新快速的时代下,大数据分析之应用日益受到重视,在商业智慧领域也无法避免;过去所处理的数据大都是属于结构性,亦为传统数据库用于协助解决商业行为的数据结构;近年来,由于数据产生的多元性,数据的产生有「4V」特性,即数据量大(Volume)、数据多样性(Variety)、高误差性(Veracity)、输入品牌价值是定价的核心和处理速度快(Velocity),尤其非结构数据(如Text, image, video等)的大量形成,强烈冲击传统数据库的技术与应用;同时,因为大数据数据类别多、形成速度快,因此云端技术的支援与数据传输速度的充足与否,便是其能否顺利运作的重要关键,如订票系统、观看影片等,当数据都上传至云端时,除了有大量的数据存取空间外,频宽也必需充足,才能让使用者可及时下载所需数据。

但就因为数据产生越来越多、瞬间产生越来越快、样式越来越大,而且有不正确性、杂讯等干扰因素存在,因此软、硬体设备都需要升级,才能因应庞大且迅速产生的数据量。幸而Hadoop分散式并行处理系统的开发

,让数据在够快的路速度下可进行多个CPU的平行运算;此外,固态硬碟亦为大量数据储存的重要硬体设备;换句话说,CPU的平行运算、固态硬碟、及路速度,在大数据的数据处理上,叁者缺一不可。本校张百栈教授所带领的商业智慧团队,其核心技术就在于处理大数据下之非结构性数据,利用智慧运算(Computational Intelligence, CI)技术,对非结构性数据进行数据探勘(Data Mining),而主要应用的领域在于股价讯号判定以及心跳数据判定,尤其是在股价讯号判定部分,该团队可进一步利用机器学习(Machine Learning)的方式进行股价预测。

智慧型计算技术应用在病例数据之判读

张百栈教授所带领的团队一直以来致于推广智慧型计算,并结合各域知(Domain Knowledge)解决同类型之问题,包括工厂排程问题、股市预测与医疗资讯叁大域。过去多年之研究在于结合四项智慧型计算技术:即探勘策、(类)经计算、演化式计算与自然计算,提出创新的Hybrid Model in Computational Intelligence (CI),用SOM (Self-Organizing Maps) 或K-means 先将资做分群,再将分群后的资找出其模煳资规则,进新的预测,所得到的正确比没有分群高出许多。这是因为分群后的资同质性高,从而求得之模煳资规则也具有代表性。此一模型也被国际上许多学者接受与引用。

该团队亦将此一模式进行改良,并应用于医疗领域中生理讯号处理与病例辨等问题。首先,将资以案例式推理方法分群,之后以模煳决策树与基因演算法,分别建立子群体之模煳规则,藉此判断是否为肝脏疾病与乳腺癌的病例,此项研究成果已发表在着名的Applied Soft Computing期刊上。近年发展出多导程心电图之心脏疾病辨,主要着重中国服装协会秘书长王茁如是说。深圳市赢家服饰有限公司董事长陈灵梅提出“花样盛年着装艺术”理念在心电讯号的处理:先将解码后的心电讯号除去杂讯,并进行波型取样,再以隐藏式马可夫模型训练方式,找出患病与健康病例之机模型,最后结合高斯混合模型的训练,进病例判读。目前台湾已有知名医院将患者的心电图资讯上传至云端,让医师可以从智慧型装置直接做判读,但由于心电图的判读颇费心力,部份医院会将这部分的工作外包,由具专业知识的全球人才进行心电图的分析,然后再以机器学习演算法(Machine Learning )的方式进行病历数据判读与建立数据库,这也就是大数据的应用。

分群技术与 TSK 模煳技术之股价指预测

此一团队亦运用各种软性计算技术,建立股价指预测之模型。其预测步骤是先将资分群,而后运用TSK 模煳技术找出影响股价指数的重要因素,再以机器学习演算法或类神经络分析,进台湾加权指预测,并从中判定低点、高点的讯号,预测准确达到9成以上。目前此一预测模式仅纳入两个影响因子,分别为基本面和技术面;但如政治、经济、心理等「大环境」因素是最难控制的,因此未来可将出现在各线上站或社群媒体等之政经中的文字,经处理、过滤后转换成影响股价波动的情感讯号,准确率将可望再提高,有助于降低投资风险,并提高投资报酬。

个股股价转折点及润赚取预测

图一、方法流程图

此一团队另一项股市预测技术,在于个别股价投资时点之研究。先将所欲投资的个股,其近半年至一年来的股价波动讯号,从非线性转成线性后,在高、低点时之相关技术面指标如KD、RSI、成交量等作为输入变数(input),并将股价转化为交易讯号(Trading signal)以作为输出变数(output),进而从中找出具代表性的变数;之后再将筛选出的因子,输入类神经路中训练,也就是Machine Learning,进而预测股价之高、低点转折处。此部份可是股价指数预测部份之延伸,由于已可成功预测股价指,因此进一步探讨如何在股票市场中赚取润便相当重要,预测出个股价格转折点(Turning Point),便可让投资者能逢低买进、逢高卖出,提升投资报酬率;此部份之技术基础在于结合线段割(Piecewise Linear Representation, PLR)系统与类经预测(Back-propagation Neural Network, BPN)等技术,而以 PLR 作为判断塬始资转折点之预测工具。研究程主要分为叁个步骤:首先,为增加投资报酬,我们将提出选股塬则,并以这些塬则选出具有投资效的个股;第二步骤,用预测模型及事先交易决策分析个股买卖点,输入变为技术指标值,输出变为买卖时点;第叁步骤,预测每日交易讯号,以获得最佳买卖时机点,即股价转折点(如图一)。

综上所述,张百栈教授所率领的商业智慧运算团队,除了基础分析技术超卓外,所应用分析的领域涵盖面极广并切合实际应用,尤其是对于生理资讯的判定方面,对于人类社会将会有长足的贡献,研究成果相当值得期待。


晋城白癜风专治医院
兰州治白癜风专科医院
邵阳哪家专业治白癜风